中國(guó)資本網(wǎng) > 新聞 > 熱點(diǎn)新聞 > 正文
國(guó)內(nèi)外主流數(shù)據(jù)可視化分析工具對(duì)比
2018-05-28 10:56:58來(lái)源: 中國(guó)商業(yè)觀察網(wǎng)

 

大數(shù)據(jù)能否真正的具備參考價(jià)值?這在某種程度上取決于企業(yè)是否部署了合適的數(shù)據(jù)可視化分析工具。在幾乎每個(gè)部門都充斥著關(guān)于客戶、流程和運(yùn)營(yíng)的信息時(shí)代,有效的數(shù)據(jù)可視化分析工具能夠幫助企業(yè)機(jī)構(gòu)快速地建立競(jìng)爭(zhēng)優(yōu)勢(shì)。

數(shù)據(jù)可視化分析產(chǎn)品主要是通過(guò)在企業(yè)各類業(yè)務(wù)系統(tǒng)中提取數(shù)據(jù),并提供整合、分析、可視化及協(xié)作等功能,來(lái)幫助企業(yè)完成數(shù)據(jù)價(jià)值的發(fā)現(xiàn)過(guò)程。通過(guò)將原始的業(yè)務(wù)數(shù)據(jù)轉(zhuǎn)換為可理解的圖表和故事版,企業(yè)可以獲得更加直觀和快捷的業(yè)務(wù)洞察,更好地做出商務(wù)決策等等。

目前,市面上有不少數(shù)據(jù)可視化分析產(chǎn)品可供企業(yè)選擇,相對(duì)主流的產(chǎn)品包括Tableau、Qlik、Power BI以及DataHunter數(shù)據(jù)可視化分析平臺(tái)。對(duì)于國(guó)內(nèi)企業(yè)而言,想要部署一款合適的可視化產(chǎn)品,需要考慮到方方面面的因素,包括企業(yè)服務(wù)能力、支持的數(shù)據(jù)源、分析能力、故事版、協(xié)作能力、定價(jià)等,本文,我們就將根據(jù)這些因素,對(duì)以上產(chǎn)品進(jìn)行一一比較,看看每款產(chǎn)品的不同之處。

數(shù)據(jù)源

豐富的數(shù)據(jù)源可以幫助企業(yè)在進(jìn)行可視化分析時(shí)方便的接入各種系統(tǒng)和數(shù)據(jù)文件,具體包括文本文件、數(shù)據(jù)庫(kù)及其他外部文件。

在文本文件方面,Tableau的支持最為豐富,支持類型包括了Excel、CSV、txt、JSON、PDF、空間文件以及統(tǒng)計(jì)文件等,相對(duì)而言,Qlik、Power BI以及DataHunter則主要以Excel、CSV文件為主。

在數(shù)據(jù)庫(kù)方面,目前四款產(chǎn)品對(duì)主流的數(shù)據(jù)庫(kù)都有很好的支持,包括MySQL、Postgre SQL、SQL Server、Hive、GreenPlum、Oracle等。

值得一提的是,DataHunter數(shù)據(jù)可視化分析平臺(tái)也可以無(wú)縫對(duì)接第三方公共數(shù)據(jù)源,包括人口統(tǒng)計(jì)、金融、天氣等公共數(shù)據(jù),而Tableau、Qlik和Power BI需要單獨(dú)處理外部數(shù)據(jù)。此外,DataHunter還內(nèi)置了表單數(shù)據(jù)采集,方便用戶使用Excel文件創(chuàng)建表單。

數(shù)據(jù)處理

分析人員往往會(huì)在數(shù)據(jù)處理環(huán)節(jié)浪費(fèi)大量時(shí)間,因?yàn)樵诖蠖鄶?shù)情況下,采集到的數(shù)據(jù)都比較“臟”,例如行中可能缺字段,或者可能包含無(wú)意義的值。這個(gè)時(shí)候,高效、便捷的數(shù)據(jù)處理能力,可以幫助分析人員快速完成這一過(guò)程,從而提高工作效率。

在數(shù)據(jù)整合方面,Tableau、Qlik、Power BI和DataHunter都可以對(duì)各種來(lái)源的數(shù)據(jù)進(jìn)行統(tǒng)一處理,所不同的是,DataHunter支持整合企業(yè)內(nèi)所有系統(tǒng)數(shù)據(jù)源,Tableau則可以通過(guò)Tableau Prep產(chǎn)品實(shí)現(xiàn),而Qlik和Power BI則需要借助第三方工具。此外,DataHunter內(nèi)置了ETL清洗器,可將多種數(shù)據(jù)源、數(shù)據(jù)格式歸一化。

分析能力

分析能力是數(shù)據(jù)可視化產(chǎn)品的主要賣點(diǎn)之一,本文我們將從兩個(gè)維度進(jìn)行比較,即數(shù)據(jù)可視化和數(shù)據(jù)分析。數(shù)據(jù)可視化主要包括對(duì)圖表的支持及擴(kuò)展性;分析層面主要包括數(shù)據(jù)鉆取、交互性和高級(jí)分析等。

在基礎(chǔ)圖表方面,Tableau、Qlik、Power BI和DataHunter四款產(chǎn)品大同小異,基本上對(duì)常用的數(shù)據(jù)圖表,如柱狀圖、堆積柱圖、條圖、堆積條圖、折線圖、面積圖等都有很好的支持。同時(shí),用戶在進(jìn)行可視化分析過(guò)程中,這四款產(chǎn)品也都會(huì)進(jìn)行智能化的圖表推薦。

對(duì)于高級(jí)圖表,四款產(chǎn)品的支持種類則有所不同,Tableau支持樹狀圖、箱線圖、標(biāo)靶圖、圓視圖等;Qlik支持散點(diǎn)矩陣、關(guān)聯(lián)分析應(yīng)用圖等;Power BI支持瀑布圖、樹狀圖等;而DataHunter支持包括雷達(dá)圖、箱線圖、熱力圖、樹狀圖、關(guān)系圖、?;鶊D等。

在圖表擴(kuò)展性方面,Tableau、Power BI兩款產(chǎn)品的難度最大,需要專業(yè)技術(shù)人員的開發(fā);Qlik難度較小,但也需要使用JavaScript開發(fā);DataHunter在這方面較為靈活,自身就可接入Echars等第三方圖表以及企業(yè)自帶圖表類型。

在性能上,我們知道Tableau使用的是內(nèi)存和內(nèi)存數(shù)據(jù)庫(kù)分析體系結(jié)構(gòu)組成的混合模型,其分析功能包括數(shù)據(jù)發(fā)現(xiàn),數(shù)據(jù)可視化,地理編碼,調(diào)查分析,時(shí)間序列分析,社交分析等,同時(shí)Tableau可與R語(yǔ)言集成,并提供了移動(dòng)端的支持。

值得一提的是,Tableau的數(shù)據(jù)準(zhǔn)備功能較為強(qiáng)大,可以幫助分析人員快速整理數(shù)據(jù),并在同步時(shí)修復(fù)/配置數(shù)據(jù),也可將交叉表數(shù)據(jù)重新轉(zhuǎn)換為標(biāo)準(zhǔn)化列,刪除無(wú)關(guān)的標(biāo)題、文本和圖像,協(xié)調(diào)元數(shù)據(jù)字段等。

DataHunter和Qlik使用是內(nèi)存分析引擎,其優(yōu)勢(shì)在于可以處理海量的業(yè)務(wù)數(shù)據(jù),DataHunter簡(jiǎn)化了ETL的處理流程,因此即便分析人員沒有任何編程經(jīng)驗(yàn),也可以快速處理并分析數(shù)據(jù)。同時(shí),DataHunter也支持SaaS版部署模式,這使得企業(yè)可以大大減少自身服務(wù)器的負(fù)載。

如今,數(shù)據(jù)鉆取、關(guān)聯(lián)分析已經(jīng)成為數(shù)據(jù)可視化工具的必備功能,這四款產(chǎn)品對(duì)此也都有很好的支持,而對(duì)于趨勢(shì)、聚類等常用分析,特別是對(duì)R和Python的支持也同樣如此。在差異性上,DataHunter在嵌入式分析方面更為靈活,其支持企業(yè)與用戶原有系統(tǒng)集成嵌入。

協(xié)作能力

協(xié)作正在成為數(shù)據(jù)可視化分析工具的必備功能。在愈發(fā)強(qiáng)調(diào)團(tuán)隊(duì)協(xié)作的今天,企業(yè)不僅需要簡(jiǎn)單、易用、靈活的可視化工具,更需要一個(gè)可以讓各部門共享數(shù)據(jù),協(xié)同完成業(yè)務(wù)分析流程的平臺(tái),同時(shí),企業(yè)管理者也可以基于該平臺(tái)溝通問題并做出決策。

不管是數(shù)據(jù)共享還是團(tuán)隊(duì)討論,DataHunter產(chǎn)品在這方面都有很好的功能體驗(yàn),包括支持一鍵共享給團(tuán)隊(duì)內(nèi)、跨團(tuán)隊(duì)和系統(tǒng)外人員;團(tuán)隊(duì)內(nèi)成員可針對(duì)可視化看板進(jìn)行討論溝通,同時(shí)也可在系統(tǒng)內(nèi)做故事板進(jìn)行匯報(bào),此功能支持添加快照、實(shí)時(shí)圖表、形狀組件等元素。

同時(shí),Tableau和Qlik也支持用戶進(jìn)行數(shù)據(jù)協(xié)作,Tableau支持用戶通過(guò)Server端或Online端共享數(shù)據(jù)看板,用戶可在系統(tǒng)內(nèi)做故事板進(jìn)行匯報(bào),并支持添加實(shí)時(shí)圖表和文本組件。相比而言,Power BI在數(shù)據(jù)協(xié)作方面的支持并不是很好。

版本區(qū)別

在很多情況下,產(chǎn)品支持的部署方式和定價(jià)也決定著企業(yè)是否會(huì)考慮該產(chǎn)品,這也是四款產(chǎn)品最大的差異點(diǎn)之一??傮w而言,Tableau和Power BI提供的版本較為豐富,而DataHunter產(chǎn)品的性價(jià)比更高。

Tableau版本:

•Tableau Desktop(用于可視化和分析數(shù)據(jù),創(chuàng)建工作簿,可視化文件和儀表板)

•Tableau Server(用于編輯和分發(fā)BI資產(chǎn))

•Tableau Online(Tableau Server的托管版本)

Qlik版本:

•Qlik Sense Desktop (桌面版)

•Qlik Sense Enterprise(企業(yè)版)

•Qlik Sense Cloud(SaaS版)

•QlikView(個(gè)人版)

Power BI版本:

•Power BI Desktop(個(gè)人桌面版,免費(fèi)下載)

•Power BI Pro(增強(qiáng)版的用戶,共享和協(xié)作功能,每位用戶每月9.99美金)

•Power BI Premium(企業(yè)部署版,無(wú)限制功能)

DataHunter版本:

•SaaS版(無(wú)限制功能,可免費(fèi)試用)

•企業(yè)部署版(可定制化部署)

如何選擇?

這四款數(shù)據(jù)可視化分析產(chǎn)品都可以幫助企業(yè)挖掘數(shù)據(jù)、可視化數(shù)據(jù),并輔助管理者做出更好的商業(yè)決策。同時(shí),也都具備優(yōu)秀的擴(kuò)展性和易用性,在移動(dòng)設(shè)備支持方面也都很出色。但是,對(duì)于國(guó)內(nèi)企業(yè)而言,如果考慮到定制化的部署和價(jià)格等因素,DataHunter數(shù)據(jù)可視化分析平臺(tái)無(wú)疑是更好的選擇,而且,DataHunter在數(shù)據(jù)協(xié)作方面也表現(xiàn)出色。

專題新聞
  • 唐山廣播電視臺(tái)少兒新春喜樂會(huì)錄制圓滿成功
  • 心中的寶塔山
  • 說(shuō)說(shuō)寶應(yīng)彭城堂劉氏
  • 殘疾人奉獻(xiàn)愛心 重陽(yáng)節(jié)慰問老人
  • 2017寶應(yīng)青年千人毅行開始啦!一起邂逅這一道最壯觀的風(fēng)景
  • 寶應(yīng)微電影《歸途》讓“太平洋警察”火起來(lái)

信息網(wǎng)絡(luò)傳播視聽節(jié)目許可證:0052421  中國(guó)資本網(wǎng)  粵ICP備18025786號(hào)-2

Copyright © 2018 Shenyang Radio and TV All Rights Reserved.商務(wù)合作QQ:8553591